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Abstract. The transport properties of finite length double-walled carbon nanotubes subject to the influ-
ences of a transverse electric field and a magnetic field with varying polar angles are investigated theoreti-
cally. The electrical conductance, thermal conductance and Peltier coefficient dependences on the external
fields and symmetric configuration are studied in linear response regime. Prominent peak structures of the
electrical conductance are predicted when varying the electric field strength. The features of the conduc-
tance peaks are found to be strongly dependent on the external fields and the intertube interactions. The
heights of the electrical and thermal conductance peaks display the quantized behavior, while those of the
Peltier coefficient do not. The conductance peaks are found to be broadened by the finite temperature.

PACS. 61.46.-w Nanoscale materials – 73.22.-f Electronic structure of nanoscale materials: clusters,
nanoparticles, nanotubes, and nanocrystals – 85.35.Kt Nanotube devices

1 Introduction

There is tremendous interest in the transport proper-
ties of carbon nanotubes (CN’s) [1] due to their poten-
tial use in novel nanodevices [2]. A hollow cylinder made
up of a rolled-up graphite sheet is a single-walled car-
bon nanotube (SWCN), and multi-walled carbon nan-
otubes (MWCN’s) are composed of several concentric hol-
low cylinders. The most noticeable feature of MWCN’s is
the existence of intertube interactions. Previous theoret-
ical works have demonstrated that intertube interactions
significantly alter the electronic and transport properties
of hybrid nanotube systems, such as pseudogap open-
ing in double-walled carbon nanotubes (DWCN’s) [3,4],
and diffusive transport in incommensurate MWCN’s [5].
DWCN’s are the simplest MWCN’s, and they provide a
good platform for studying the intertube interactions in
MWCN’s. Lately, it is feasible to synthesize highly purified
SWCN’s [6] and DWCN’s [7] efficiently.

Electronic transport in low-dimensional systems has
been extensively studied [8–12]. One of the most impor-
tant results is that for a one-dimensional conductor, in
the ballistic regime, the electrical conductance is quan-
tized in multiples of the quantum 2e2/h [8,9]. It has been
speculated that similar behavior should exist for the ther-
mal transport. Schwab and collaborators observed the
quantum of the thermal conductance, κo = π2k2

BT/3h,
in nanosized narrow wires [13]. Theoretical calculations
show that a conducting SWCN has only two conducting
channels, and predict that the electrical conductance will
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be 4e2/h independent of radius and length [14,15]. Frank
and collaborators found the quantized electrical conduc-
tance of MWCN’s at room temperature [16]. The quan-
tized conductance steps in solutions of MWCN’s had also
been reported by Urbina and co-workers [17]. The electri-
cal conductance caused by intertube transfer was directly
measured in telescoping MWCN’s [18]. The experimen-
tally observed linear T dependence of the thermal con-
ductance at low-temperature may indicate the existence
of quantized thermal conductance in SWCNs [19]. The-
oretical calculations have shown that quasibound states
cause electrical conductance oscillations in DWCN’s [20].
In this work, the electrical and thermal transport proper-
ties of finite length DWCN’s are investigated within the
ballistic regime. Once the formulation for DWCN is es-
tablished, the generalization to MWCN will be straight
forward.

2 Theory

A finite length CN is formed by rolling a graphite
sheet from the origin to the vector Ch = ma1 +
na2, where a1 and a2 are the primitive lattice vec-
tors of the graphene sheet. It has the radius r =
|Ch|/2π = b

√
3(m2 + mn + n2)/2π and the chiral angle

ξ = tan−1[−√
3n/(2m + n)]. b = 1.42 Å is the C–C bond

length. The length of a finite CN is determined by the total
number of carbon atoms (NA). Therefore, a finite length
CN can be characterized by (m, n; NA). With the periodic
boundary condition imposing on the electron wave func-
tion along the circumference, the azimuthal wave vector
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kΦ equals J/r, and the angular momentum J is an integer.
Details of the geometric and electronic structures of finite
CNs are given in reference [21].

Transport properties of finite length DWCN’s under a
uniform transverse electric field and a magnetic field with
arbitrary polar angle are investigated in this work. We em-
ploy the tight-binding model to calculate the electronic
structures of CNs. In the presence of a uniform electric
field F perpendicular to the nanotube axis, the onsite en-
ergy of the ith carbon atom in tight-binding calculations
will be perturbed by the amount ∆E = −eFr cosΦi, with
Φi being the azimuthal angle between the electric field
and the radial vector of the ith carbon atom. The nan-
otube axis and the electric field direction are assumed
to be the z-axis and x-axis, respectively. The x-axis is
chosen in a way that the nanotube is mirror symmetric
about it. When a uniform magnetic field passes through
a CN, the phase of the electron wave function, which
is determined by the vector potential, will be modified.
The magnetic field is assumed to have the polar angle
α. Then the vector potential A equals φB cosα/2πrΦ̂ +
φB sin α sin Φ/πrẑ, which will induce an extra phase fac-
tor exp(i2π∆GR/φB0) in the Hamiltonian matrix element
between sites i and j. ∆GR =

∫ Rj

Ri
A ·dl, φB = πr2B, and

φB0 = hc/e is the magnetic flux quantum.
The (5, 5; 90)–(10, 10; 180) armchair DWCN with C5

symmetry is chosen as a model study (Fig. 1a). The con-
figuration of the inner tube is enlarged (the heavy curves),
and projected onto the outer tube (the light curves). The
intertube distance dio is 3.39 Å, which is consistent with
experimental measurements [1,22]. The nearest-neighbor
tight-binding Hamiltonian is given as

H =
∑

i,j

tini,jc
+
i cj + W

∑

k,l

tiok,le
(dio−dkl)/δc+

k cl , (1)

where tini,j and tiok,l are the intratube and intertube transfer
integrals, respectively. Only hopping between the nearest
neighbors are considered. The intertube interactions are
assumed to decay exponentially with interatom distance
dkl, as given in equation (1). δ = 0.45 Å and the parameter
W is chosen to be 1/16. The details of assigning the Hamil-
tonian matrix elements are given in references [23,24]. c+

i
and cj are the creation and annihilation operators at sites
i and j, respectively.

After diagonalizing the Hamiltonian, the state energy
Ec,v(F, φB , α) can be obtained. The superscripts c and
v, represent the antibonding π∗ state and the bonding π
state, respectively. With the inclusion of the Zeeman ef-
fect, the total state energy becomes Ec,v(F, φB , α; σ) =
Ec,v(F, φB , α) + gσφB/(m∗r2φB0). The g factor is des-
ignated to be the same as that (∼2) of graphite, where
σ = ±1/2 is the electron spin and m∗ is the bare electron
mass.

We consider a finite length DWCN in a transverse elec-
tric field and a magnetic field with polar angle α, which
is suspended between two reservoirs (macroscopic leads).
The left and right reservoirs are assumed to have the
chemical potentials and the temperatures (µ+eV, T ) and

Fig. 1. Three kinds of symmetric configurations of the
(5, 5; 90)–(10, 10; 180) DWCN are shown: (a) C5, (b) D5h,
and (c) S5. The inner tube is enlarged (the heavy curves), and
projected onto the outer tube (the light curves).

(µ, T + ∆T ), respectively. In the ballistic regime, making
use of the Landauer-Buttiker formula, the net electric and
thermal currents are, respectively, given by

I(F, φB , α) =
e

h

∫
dE T (E, F, φB , α)

×
[
fo

(
E − µ − eV

T

)
− fo

(
E − µ

T + ∆T

)]
(2)

and

U(F, φB , α) =
1
h

∫
dE (E − µ)T (E, F, φB , α)

×
[
fo

(
E − µ − eV

T

)
− fo

(
E − µ

T + ∆T

)]
, (3)

where fo is the Fermi-Dirac distribution function, and the
elastic transmission coefficient is approximately given as

T (E, F, φB, α) =

2Tres

∑

c,v,σ

Γ 2

[Ec,v(F, φB , α; σ) − E]2 + Γ 2
, (4)

where Γ is the broadening width of the electron state en-
ergy caused by leaking into the emitter or collector. In this
study, Γ is chosen to be 3.3 × 10−5γo (∼ 0.1 meV; γo =
2.66 eV). Tres is the transmission probability at resonance
(Ec(F, φB , α; σ) = E).

Within the linear-response approximation (∆T → 0
and V → 0), I is reduced to L0V − (L1∆T/T ) and U
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becomes L1V − (L2∆T/T ). The electrical conductance
is defined by G = I/V = L0 at ∆T = 0. The Peltier
coefficient Π , which is related to the electromotive force
(E.M.F.) generated by the system in response to a tem-
perature gradient when I = 0, is L1/L0. The thermal
conductance κ, defined as the net thermal current pro-
duced by a temperature gradient at I = 0, is given by
(L2 − L2

1L−1
0 )/T . Lβ(F ) is defined as

Lβ(F ) =
e2−β

h

∫
dE (E − µ)β

× T (E, F, φB , α)
−∂fo(E)

∂E
. (5)

At low temperatures, the main contributions to Lβ (β =
1, 2, 3) come from electronic states very close to the chem-
ical potential.

3 Results and discussion

The (5, 5; 90)–(10, 10; 180) armchair DWCN with C5

symmetry has been chosen as a model study. State en-
ergies without intertube interactions (independent tubes)
are shown in Figure 2a. Electronic energies are symmet-
ric about the Fermi level. The intertube interactions will
reduce the energy gap, change the curvature or the F de-
pendence of the state energy, and the electronic structures
are no longer symmetric about the Fermi level (Fig. 2b).
A parallel magnetic field (α = 0◦) will modify the curva-
ture (Fig. 2c), but a transverse magnetic field (α = 90◦;
Fig. 2d) will not. That the parallel magnetic field would
induce a shift in kΦ from J/r to (J + cosα φB/φB0)/r is
the main reason. The Zeeman splitting would introduce
a further split for the spin-up and spin-down states. The
changes in state energies at α = 90◦ are mainly caused by
the Zeeman effect (Fig. 2d).

The electrical conductance displays sharp peak struc-
tures with varying F (Fig. 3). Explanations of the spike
behavior are as follows. The ∂f(E)/∂E function is a
prominent Lorentzian function at the Fermi energy. The
electron state energies rely sensitively on F [25–28]. There-
fore, the lowest state may touch the Fermi level and con-
tributes to the electrical conductance, or untouch the
Fermi level and does not contribute as F differs slightly.
The positions of the peak correspond to the F values that
lead to the semiconductor-metal transitions, and their
heights are related to the number of states at the Fermi
level. Considering the cases with φB = 0, when there is no
intertube interaction, there are two peaks. The intertube
interactions will alter the positions of the peaks depend-
ing on the symmetric configuration (Figs. 3b–3d). The
heights of the peaks display quantized behavior. The in-
clusion of magnetic field will generally halve the heights
(Figs. 3a–3d). It can be explained as follow. The peak is
contributed equally by the spin-up and spin-down states,
when φB = 0. An external magnetic field will break the
spin degeneracy and shift the state energies. The result-
ing states might or might not cross the Fermi level. If they

Fig. 2. The state energies versus the transverse electric field
strength F for the (5, 5; 90)–(10, 10; 180) DWCN with (a)
no intertube interaction and φB = 0, (b) C5 symmetry and
φB = 0, (c) C5 symmetry, φB = 0.1φB0 and α = 0◦; (d)
C5 symmetry, φB = 0.1φB0 and α = 90◦. The Fermi level
equals zero.

do cross the Fermi level, their heights will be half of the
original values. We have also calculated the electrical con-
ductance of C5 system for different α (Figs. 3b, 3e–3g).
The ballistic transport properties are found to essentially
rely on how the states cross the Fermi energy as the exter-
nal fields vary. The difference in α only affects when and
where the crossing occurs. It only modifies the number
and positions of the peaks. Moreover, the effects of the
magnetic field are less manifested at large F . The double
peaks’ structures around F = 0.08 γo/e Å depend weakly
on α (Figs. 3b, 3e–3g).

Comparing Figures 3 and 4, it is obvious that the num-
ber, heights, and positions of the thermal conductance
peaks are closely corresponding to those of the electrical
conductance (Figs. 4a–4d). The Wiedemann-Franz (WF)
law, as discussed later in equation (6), is the main rea-
son. On the other hand, there are differences in the shape
and extent of the peaks between the electrical conduc-
tance and thermal conductance. The differences are orig-
inated from the different integrand in equation (5). The
computed Peltier coefficient exhibits antisymmetric struc-
tures with peaks and dips (Figs. 4e–4h). It is caused by
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Fig. 3. The electric-field-dependent electrical conductance at
T = 2 K, µ = 0, φB = 0.1 φB0, and α = 0◦ for the (5, 5; 90)–
(10, 10; 180) DWCN for four kinds of intertube interactions:
(a) no intertube interaction, (b) C5, (c) D5h, and (d) S5. The
cases with φB = 0 are shown as dashed line. Electrical conduc-
tance dependence on the electric field strength F for the C5

projection at φB = 0.1φB0 with (e) α = 30◦, (f) α = 60◦, and
(g) α = 90◦.

the antisymmetry of the integrand of L1. Moreover, the
heights of Π do not exhibit the quantized behavior, and
they are independent of the spin degeneracy. The func-
tions L0 and L1 are individually proportional to the num-
ber of degenerate states at µ, but the ratio or Π is not.

The thermal broadening effects on the conductance
peaks are demonstrated in Figures 5a–5b. The ∂f(E)/∂E
prominent Lorentzian function is widened by the finite
temperature with a width kBT , and consequently the
number of conducting states is also altered. The pro-
nounced peak structure of the electrical conductance and
the thermal conductance are gradually stretched by the
increasing temperature. At the same temperature, the in-
tegrand of L2 (Eq. (5)), which is quadratic in E − µ, is
more extended in energy domain than that of L0. There-
fore, κ is more susceptible to the thermal broadening effect
than G.

At small T , L2 can be approximated as L2 ≈
π2k2

BT 2L0/3e2. For a SWCN, as pointed out by Lin and
coworkers [29], L2 � L2

1L−1
0 , thus

κ ≈ L2

T
≈ π2k2

BT

3e2
G, (6)

Fig. 4. The electric-field-dependent thermal conductance at
T = 2 K, µ = 0, and φB = 0.1 φB0 for the (5, 5; 90)–
(10, 10; 180) DWCN with C5 symmetry at (a) α = 0◦, (b)
α = 30◦, (c) α = 60◦, and (d) α = 90◦. The electric-field-
dependent Peltier coefficient at µ = 0.001γo , φB = 0.1φB0

with (e) α = 0◦, (f) α = 30◦, (g) α = 60◦, and (h) α = 90◦.
The cases with φB = 0 are shown as dashed line.

which is the Wiedemann-Franz law. It is of interest to in-
vestigate whether this law holds for finite length DWCN’s.
Caused by the different sensitivity on temperature be-
tween κ and G, the ratio κ/G fluctuates strongly about 1
(in unit of π2k2

BT/3e2) when states get close to µ (Fig. 6).
The amplitude of fluctuation increases with temperature.
However, the WF law is well obeyed in a wide range of F
when the states depart from µ. Depolarization or screen-
ing effects, which arise from redistribution of carriers in-
duced by the external electric field, have not been taken in
account. A thorough investigation of the effective electric
field would require the self-consistent field approach [30–
32]. In this study, F is the effective electric field strength,
and the external (or applied) electric field strength is
roughly determined to be five times of F in a carbon nan-
otube, according to calculations given in literatures [28,
32,33]. Quantitative estimate of the field intensity is ben-
eficial for readers performing experimental study. The
magnetic field strength corresponding to φB = 0.1φB0 is
286.3 T, and F = 0.1γo/e Å is 0.266 V/ Å. The arm-
chair DWCN’s considered in this study are commensurate
systems with well-defined unit cell, and the Bloch the-
orem is applicable. In general, incommensurate DWCN’s
do not have rotational symmetries, and the Bloch theorem
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Fig. 5. The dependence of (a) the electrical conductance, (b)
the thermal conductance, and (c) the Peltier coefficient on the
electric field strength F at φB = 0.1φB0 and α = 90◦ for the
(5, 5; 90)–(10, 10; 180) DWCN with C5 symmetry at various
temperatures.

is no longer applicable. Therefore, our approach cannot be
used for incommensurate systems. The electronic proper-
ties of incommensurate carbon nanotube systems are doc-
umented in reference [34]. In this work, the nanotubes are
assumed to be defect-free. Chico and co-workers investi-
gates the quantum conductance of SWCN’s with defects
by the Green’s function matching method [35]. They found
that a single vacancy produces a dramatic decrease in the
conductance of small-radius tubes. Son and collaborators
studied the resistance of defective metallic SWCN in a
transverse electric field by first-principles calculations [36],
and demonstrated that the resistance is tunable up to
three orders of magnitude by both defects and electric
field.

4 Concluding remarks

In conclusion, the transport properties of finite length
double-walled carbon nanotubes subject to the influences

Fig. 6. Relation between the thermal conductance and the
electrical conductance versus F for the (5, 5; 90)–(10, 10; 180)
DWCN with C5 symmetry at φB = 0.1φB0, α = 90◦, and µ = 0
with various temperatures.

of a transverse electric field and a magnetic field with
varying polar angles are investigated theoretically. The
electrical conductance, thermal conductance and Peltier
coefficient dependence on the external fields and sym-
metric configuration is studied in linear response regime.
Prominent peak structures of the electrical conductance
are predicted when varying the electric field strength. The
number, heights, and positions of the conductance peaks
are found to be strongly dependent on the external fields
and the intertube interactions. The heights of the elec-
trical and thermal conductance peaks display the quan-
tized behavior, while those of the Peltier coefficient do
not. The conductance peaks are broadened by the finite
temperature. Moreover, it is found that the validity of the
Wiedemann-Franz law relies upon the temperature, the
field strength, the electronic structure, and the chemical
potential. This formulation can be generalized and applied
to MWCN.
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